EspoTek Labrador Board


EspoTek Labrador Board
Shipping is free, worldwide!


About Labrador:

Labrador is an all-in-one tool for electronics students, makers and hobbyists.
Plug the board into a PC, Raspberry Pi or Android device via a MicroUSB cable (not included), load up the software and you instantly have a complete arsenal of engineering tools!
Oh, and did I mention that both hardware and software are 100% open-source?

On-board Tools:

  • Oscilloscope (2 channel, 750ksps)
  • Arbitrary Waveform Generator (2 channel, 1MSPS per channel)
  • Power Supply (4.5 to 15V, 0.75W max output, with closed-loop feedback)
  • Logic Analyzer (2 channel, 3MSPS per channel, with serial decoding)
  • Multimeter (V/I/R/C)
  • Software compatible with Windows, OSX, Linux, Android and Raspbian.

Labrador in the media:

Labrador was initially launched as part of a crowdfunding campaign through Crowd Supply that raised over $23,000.
During this time, it was featured in several online publications, including Make:

There have also been two reviews so far.
The first is from Graham Morrison of HackSpace Magazine, the Raspberry Pi Foundation’s official magazine for makers (PDF).

The second is from Scott from Arduino Basics, an Aussie-based YouTube channel that received an early engineering prototype.



The development of Labrador took more than 2.5 years to complete, and most of this effort was put towards the software interface.
Everything was been designed from the ground up to be simple to use for beginners, while avoiding the stripping out of features that more experienced engineers could take use of.

There’s a fully featured 2-channel DAQ mode with variable sample rate, CSV export, signal averaging and offline playback, but it’s placed in the menus rather than the main screen.
Design decisions like this make Labrador suitable for makers and engineers of all skill levels.

The oscilloscope, especially, was redesigned from first principles to take advantage of the host PC’s immense processing power and memory.
Every sample captured by the board’s ADC is sent over USB and buffered by the PC software, allowing you to view minute-long streams at a 60Hz refresh rate without a single gap in the waveform.
The controls were designed with keyboard and mouse (or trackpad) in mind.  Note the lack of virtual knobs and dials in the screenshot below.

All of this makes designing and debugging your circuits easier than ever – yes, even compared to products from the likes of Tektronix and NI.

The Desktop software interface can be downloaded from GitHub Releases.
The Android software can be downloaded from Google Play.

Above is an example of what the software interface looks like.
Here, the signal generators are generating two different waveforms (sine and sawtooth), while the oscilloscope displays the two waveforms and the horizontal and vertical cursors measure the sine wave.
Of course, if you’re a beginner, you don’t need to be doing all of that at the same time!

Full specs:

Oscilloscope Sample Rate 750ksps (shared)
Bits per Sample 8, 12¹
Bandwidth ~100kHz²
Input Voltage Range -20V to +20V
Input Impedance 1 MΩ
No. of Channels 2
Coupling AC/DC
Arbitrary Waveform Generator Waveform types Sin, Square, Triangle, Sawtooth, Arbitrary
Sample Rate 1Msps
Sample Depth 512 samples per channel
Output voltage range 0.15V to 9.5V
Bits per Sample 8
Max. Current 10mA³
Output Resistance 50Ω
No. of Channels 2
Variable Power Supply Voltage Range 4.5V to 12V
Max. Power 0.75W
No. of Outputs 1
Source Impedance Negligible⁴
Ripple Voltage +-300mV%@10V 10mA, +-700mV%@10V 100mA
Logic Analyzer Sample Rate 3Msps per channel
Supported voltage 3.3V, 5V, 12V
No. of Channels 2
Digital Output Voltage 3.3V
Source Impedance 50Ω
Multimeter Input Impedance 1MΩ
Measured Parameters V, I, R, C
Voltage Range -20V to +20V
Current Range 100uA to 10A
Resistance Range 1 ohm to 100k
Capacitance Range 10pf to 1mf
Supported Platforms Windows Windows 7, 8, 8.1 or 10. 32 and 64-bit supported.
MacOS 10.10 (Yosemite) or later
Linux Ubuntu 14.04 or later (or similar). 32 and 64-bit supported.
Android Version 4.1 or later

¹ – 12-bit sampling is available at 375ksps, single-channel only.
² – This figure is an approximate “maximum detectable frequency” dictated by the sample rate.
³ – This figure is for source current. Current is sunk partially into the opamp driving the signal gen and partially into a 1k resistor. Thus, maximum sink current can be calculated by dividing the output voltage by 1k and adding 50µA. This configuration was chosen so that capacitive loads could be driven without significant nonlinearities. In simpler terms, this means that if you’re trying to drive current into the waveform generator through use of an external current source, then the maximum current that the waveform generator can handle is reduced. (This is not something that would be an issue for most people.)
⁴ – The Power Supply is controlled by a closed-loop feedback loop that ensures the DC voltage across output remains constant. Thus, it has nonlinear elements, but can still be approximated by a Thévenin circuit with Vth = Vo and Rth = 0.
⁵ – Multimeter ranges vary with reference resistor used.


There are no reviews yet.

Be the first to review “EspoTek Labrador Board”

Your email address will not be published. Required fields are marked *